Nuprl Definition : approx_sm
13,45
postcript
pdf
approx_sm(
es
;
In
;
Out
;
Cmd
;
isupdate
;
Rsp
;
Delta
;
Q
)
==
expl
:E(
Out
)
({
e
:E(
In
)|
(
isupdate
(
In
(
e
)))} List)
==
((
e
:E(
Out
).
==
((
(
e'
:E(
In
). (
e'
expl
(
e
))
e'
c
e
) & ((
is-query(
In
;
isupdate
;
e
))
(
(
null(
expl
(
e
))))))
==
& (
e1
,
e2
:E(
Out
).
expl
(
e1
)
expl
(
e2
)
expl
(
e2
)
expl
(
e1
))
==
& (
e
:E(
Out
).
==
& (
(is-query(
In
;
isupdate
;
e
)
(
Out
(
e
) =
Q
(
In
(
expl
(
e
)),
In
(
e
))))
==
& (
& ((
is-query(
In
;
isupdate
;
e
))
(
Out
(
e
) =
Delta
(
In
(
expl
(
e
)))))))
latex
clarification:
approx_sm(
es
;
In
;
Out
;
Cmd
;
isupdate
;
Rsp
;
Delta
;
Q
)
==
expl
:es-E-interface(
es
;
Out
)
({
e
:es-E-interface(
es
;
In
)|
(
isupdate
(
In
(
e
)))} List)
==
((
e
:es-E-interface(
es
;
Out
).
==
((
(
e'
:es-E-interface(
es
;
In
). (
e'
expl
(
e
)
es-E-interface(
es
;
In
))
es-causle(
es
;
e'
;
e
))
==
((
& ((
is-query(
In
;
isupdate
;
e
))
(
(
null(
expl
(
e
))))))
==
& (
e1
:es-E-interface(
es
;
Out
),
e2
:es-E-interface(
es
;
Out
).
==
& (
expl
(
e1
)
expl
(
e2
)
es-E-interface(
es
;
In
) List
==
& (
expl
(
e2
)
expl
(
e1
)
es-E-interface(
es
;
In
) List)
==
& (
e
:es-E-interface(
es
;
Out
).
==
& (
(is-query(
In
;
isupdate
;
e
)
(
Out
(
e
) =
Q
(
In
(
expl
(
e
)),
In
(
e
))
Rsp
))
==
& (
& ((
is-query(
In
;
isupdate
;
e
))
(
Out
(
e
) =
Delta
(
In
(
expl
(
e
)))
Rsp
))))
latex
Up
abstract chain replication
Wellformedness Lemmas
approx
sm
wf
Definitions
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
type
List
,
{
x
:
A
|
B
(
x
)}
,
(
x
l
)
,
e
c
e'
,
b
,
null(
as
)
,
P
Q
,
l1
l2
,
x
:
A
.
B
(
x
)
,
E(
X
)
,
P
&
Q
,
P
Q
,
A
,
is-query(
In
;
isupdate
;
e
)
,
s
=
t
,
X
(
e
)
,
X
(
L
)
,
f
(
a
)
origin